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Abstract

An optimal and individualized treatment protocol based on accurate diagnosis is urgently required for the adequate treatment of patients. For
this purpose, it is important to develop a sophisticated algorithm that can manage large amount of data, such as gene expression data from DNA
microarray, for optimal and individualized diagnosis. Especially, marker gene selection is essential in the analysis of gene expression data.

In the present study, we developed the combination method of projective adaptive resonance theory and boosted fuzzy classifier with SWEEP
operator method for model construction and marker selection. And we applied this method to microarray data of acute leukemia and brain tumor.
The method enabled the selection of 14 important genes related to the prognosis of the tumor. In addition, we proposed improved reliability index
for cancer diagnostic prediction of blinded subjects. Based on the index, the discriminated group with over 90% prediction accuracy was separated
from the others.

PART-BFCS with improved Rlgrcs method does not only show high performance, but also has the feature of reliable prediction further. This result
suggests that PART-BFCS with improved Rlgrcs method has the potential to function as a new method of class prediction for diagnosis of patients.

© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Cancer is a major cause of disease related to human deaths
in many developed countries. Frequently, the prognosis of can-
cer patients with the same clinical diagnosis can be different.
Therefore, it is important that the prognosis of cancer patients is
accurately determined, and an adequate treatment is proposed.
However, the sensitivity of cancer patients to radiotherapy and/or
chemotherapy is determined by complex causality involving
multiple factors, and not a single factor because the mechanisms
of cancer development (or malignancy) are extremely complex.
Gene expression data from DNA microarray are individualized
and are useful in the diagnosis and prognosis of diseases [1].
However, to conduct analysis, it is necessary to select signifi-
cantly differentially expressed genes that are strongly related to
diagnosis or prognosis of disease because the performance of
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classification analysis can decline due to such large quantities
of data.

Feature selection has been performed in order to screen can-
didate genes for modeling. There are two types of approaches—
wrapper approach and filter approach. In the former approach,
features (genes) are selected as a part of mining algorithms,
such as support vector machines (SVM) [2], fuzzy neural net-
work (FNN) combined with SWEEP operator (FNN-SWEEP)
method [1], and boosted fuzzy classifier with SWEEP operator
(BFCS) method [3]. On the other hand, in the filter approach,
features are selected by filtering methods, such as U-test, t-test,
signal-to-noise statistic (S2N) [4] and projective adaptive res-
onance theory (PART) [5], prior to the application of mining
algorithms.

These methods were often used alone in previous studies. In
the present study, we combined various wrapper and filtering
approaches and then, we applied these methods to gene expres-
sion profile data of leukemia and central nervous system tumor. It
is necessary that specific and essential marker genes are selected
for cancer classification and diagnosis. Minimum gene sets with-
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out false positive ones should be extracted. Therefore, various
methods were compared under the condition of small inputs. The
combination method of PART and BFCS was the best under this
condition.

2. Materials and methods
2.1. Data processing

We used two kinds of gene expression profiles. The first
one is the gene expression profiles, obtained from http://www.
genome.wi.mit.edu/cgi-bin/cancer/datasets.cgi, reported by
Golub et al. [4]. The data set comprised 7129 human genes
(probe sets) and 72 patients (47 acute lymphoblastic leukemia
(ALL) and 25 acute myeloid leukemia (AML)), which were
obtained from acute leukemia patients at the first time of
diagnosis. In this experiment, the data set was partitioned into
one data set comprised of two groups: 38 patients (27 ALL,
11 AML) as a modeling data set for constructing the class
prediction model (predictor) and 34 patients (20 ALL, 14 AML)
as a blinded data set for evaluating the constructed predictor.
We excluded those genes for which all the 72 patients showed
an intensity of less than 1000 signals [6] prior to applying the
various filtering methods. Thus, 2476 genes were selected for
the present study.

The second one is gene expression data set of medulloblas-
toma, which is a type of central nervous system (CNS) tumor,
obtained from http://www.genome.wi.mit.edu/MPR/CNS,
reported by Pomeroy et al. [7]. Patients with medulloblastoma
are treated by combinations of surgery, radiotherapy, and
chemotherapy. In the present data set, the following three drugs
are mainly used for chemotherapy: vincristine, cisplatin, and
cytoxan. Therefore, by using gene selection and prognosis
modeling proposed in the present study, the gene related to the
treatment response can be extracted. The data set comprised
7129 human genes (probe sets) and 60 patients from whom
tumor specimens were obtained by surgery. Among these 60
patients, a few patients (16) had a short follow-up period.
Therefore, we used the data of the remaining 44 patients for
the construction of a 4-year survival prediction model. Of these
44 patients, 26 patients remained alive after 4 years and 18
patients had died. In this experiment, the data set was randomly
partitioned into three data sets consisting of two groups: 30 or
29 patients (18 or 17 survivors, 12 dead) as a modeling data set
for constructing the class prediction model (predictor) and 14
or 15 patients (8 or 9 survivors, 6 dead) as a blinded data set for
evaluating the constructed predictor. We excluded those genes
for which all the 44 patients showed the intensity of less than
1000 signals prior to applying the various filtering methods.
Thus, 2713 genes were selected for the present study.

In order to validate performance of models, 10 independent
predictors were constructed from these genes by the parameter
increasing method (PIM). The prediction accuracy of the blinded
data set was utilized for comparison of model performance, and
the accuracy was calculated as the average of 10 independent
combination predictors.

A total of 1000 genes were selected by various gene screening
methods, e.g. Mann—Whitney’s U-test, signal-to-noise statistic
(S2N), and projective adaptive resonance theory (PART), prior
to the model construction step. Subsequently, various modeling
methods were applied as described in the following sections.

2.2. Determination of optimal input number

When a large number of inputs are provided in the model,
the model is excess fitted to the training data and the robust-
ness is lost. Therefore, in order to construct a model with
relatively high robustness, we assumed that the number of IF-
THEN rules should not exceed the sample number [1]. Then, we
used a stopping condition in the present study such that the total
input number became Nyibute in all the selected weak learners;
Nattribute 18 defined according to the following condition:

Natribute < log, N (1)

where Nyribute indicates the optimum selected attribute number.
Using Eq. (1), Natribute 18 4 since N is 30 (or 29) for the CNS
data set and 5 since N is 38 for the leukemia data set.

2.3. Boosted fuzzy classifier with SWEEP operator (BFCS)

Boosting was proposed by Schapire [8], and thus far, sev-
eral derivative boosting algorithms [9-11] have been developed.
Boosting is useful for class prediction using high dimensional
inputs and is very fast algorithms.

In the previous study, we developed a boosted fuzzy classi-
fier with SWEEP operator (BFCS) method [3] on the basis of
AdaBoost [9], which is the most basic boosting algorithm. This
method enables the evaluation of reliability of the predictions
for each patient. On the other hand, it is difficult to evaluate the
reliability of the predicted results of the conventional boosting.

Fig. 1 shows the structure of BFCS. BFCS is composed of
one-input type I fuzzy neural network (FNN) models [12]. In the
present study, one-input FNN models were used as weak learn-
ers in the BFCS model, and they were combined by connection
weights, which were determined by the AdaBoost algorithm.
FNN has three types of weight parameters (w¢, wg, and wy)
[12]. In the present study, parameter wg is a constant value
(=2.0In((1.0+0.995)/(1.0-0.995))) [12], and w, is a thresh-
old that has the best odds ratio in the case that only one input
was used. we and wg were determined; wy was calculated by the
SWEEP operator method [12].

2.3.1. Reliability index for BFCS (old Rlprcs)

Reliability index (RI) based on fuzzy inference has been pro-
posed to evaluate the result of class prediction by Huang and Li
[13]. We have developed a reliability index for BFCS (RIgrcs)
by modifying RI for boosting.

We modified RI equations as follows:

INT(diffgrcs - 10) + 1, if 0 < diffgpcs < 0.9

Rlgpes =
BFCS { 10. if diffgpes > 0.9

@)
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Fig. 1. Concept of the BFCS model.

where

>r {al : argmin(diffv)}

veM,;
> e
where T indicates the number of weak learners in the BFCS
model, M; indicates set of input variables in rth selected weak
learner, «; indicates the connection weight of the tth selected

model in the construction of BFCS models, and diff, is defined
by the following equation:

diff, = ”highest(Xv) — Unext highest(Xu) 4

where v indicates the vth input in the BFCS model and u(x,)
indicates the grade of the fuzzy membership function when the
vth input x,, was inputted. It is defined by the following equation
[12]:

diffgrcs = (3)

1
T 1+ exp{—wg(xy + we)}

Uy (5
RIprcs is calculated for each example. Here, the greater RIgrcs
the sample has, the more reliable its prediction.

2.3.2. Improved reliability index for BFCS (new Rlgpcs)

In the present study, we propose improved reliability index by
modifying equation of RIgrcs for more practical cancer diagno-
sis. For previous reliability index, argmin(diff,)s in each weak
learner, that mean distance from boundary line, are multiplied
by «; and summed. For improved reliability index, argmin(diff,)
in weak learner that output opposite to integrated model, is used
as negative value. It is defined by the following equation:

ve M,

>

ZtT {a, g argmin(diffv)}

Q)

diffgrcs =

where

B —1, if sign (O,) # sign (Oy) o
8= 41, if sign (0,) = sign (0))

where O; indicates output of rth model, and Oy indicates output
of integrated model.

2.4. k-Nearest neighbor (kNN)

The k-nearest neighbor (kNN) methods are based on a dis-
tance function for pairs of tumor samples, such as the Euclidean
distance. The kNN proceeds as follows to classify blind data
set observations on the basis of the modeling data set. For each
patient in the blind data set (a) finding the k-closest patients in the
modeling data set and (b) predicting the class by majority vote;
that is, choosing the class that is most common among those
k-neighbors. The number of neighbors k=3 was used because a
similar cross-validation accuracy of model was obtained in the
modeling data set for various k.

2.5. Multiple regression analysis (MRA)

The multiple regression analysis (MRA) is one of conven-
tional methods. The MRA is a concerned with describing and
evaluating the relationship between a patient’s outcome and gene
expression. MRA models are used to help us predict patient’s
outcome by using gene expression data.

2.6. Weighted voting (WV)

The weighted voting (WV) method was originally pro-
posed by Golub et al. [4] to manage microarray data. The
weights of each gene were calculated by the signal-to-noise.
The linear models of one gene were assembled with gene
weight.
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2.7. Support vector machine (SVM)

The support vector machine (SVM) was originally proposed
by Vapnik and Chervonenkis [14] and is used to avoid the “curse
of dimensionality”. SVM is superior to many other conventional
methods and is frequently used in bioinformatics. In the present
study, the SVM-LIGHT software package [15] was used. It was
modified, and a PIM function was added to select a combination
of inputs. In the present study, the regulatory parameter ¢ was
the default value of SVM_LIGHT ((avg(input vector)?)~ 1. A
linear kernel was used because a similar cross-validation accu-
racy of model was obtained in the modeling data set for various
kernels.

2.8. Fuzzy neural network (FNN) combined with SWEEP
operator method (FNN-SWEEP)

The fuzzy neural network (FNN) combined with SWEEP
operator method (FNN-SWEEP method) was also applied for
model construction. The FNN-SWEEP method was originally
proposed by Noguchi et al. [16] and was modified by Ando
et al. [1] to manage microarray data. FNN has three types
of weight parameters (we, wg, and wyg) [12] as shown in
Fig. 2. If w. and wy are fixed, FNN can be treated as multiple
linear regression model in which wy is variable parameter.
Therefore, wy was easily optimized without training. In the
FNN-SWEEP method, only parameter wr was optimized by

Fig. 2. Three-input type-I FNN model.

the SWEEP operator method during the feature selection step.
After the input combinations were determined, FNN models
with the selected input combinations were optimized using a
backpropagation algorithm on model construction step. In the
backpropagation algorithm, the number of epochs was set to

Table 1
Comparison of accuracies on various combination methods for leukemia data set (%)

Inputs

1 2 3 4 5
BFCS with PART 779 £ 10.7 674 + 7.6 847 £ 7.4 86.5 £ 4.4 89.1* £ 7.3
BFCS with S2N 78.8 + 10.6 67.4 + 7.6 844 + 7.3 85.6 £ 5.7 832 +22
BFCS with U-test 78.8 + 10.6 674 + 7.6 844 £73 85.6 £5.7 832 £22
BFCS without screening 78.8 + 10.6 674 + 7.6 844 + 7.3 85.6 £ 5.7 832 +£22
SVM with PART 77.4 £ 10.0 794 + 7.5 80.0 £ 8.2 80.9 £ 9.7 82.4 £ 8.4
SVM with S2N 76.2 + 11.2 78.5 £ 7.0 81.8 £ 7.7 832+ 9.0 824 +£9.7
SVM with U-test 762 £ 11.2 785+ 7.0 82.6 £6.2 84.1 £ 6.7 83.5 £ 8.0
SVM without screening 76.2 + 11.2 78.5 £ 7.0 835+ 6.2 84.7 £ 6.4 85.0 £ 7.7
FNN-SWEEP with PART 77.6 £ 12.2 77.1 £ 13.1 79.7 £ 9.1 80.3 £ 8.1 859 £ 7.7
FNN-SWEEP with S2N 779 £ 11.9 803 £ 7.8 81.8 £ 8.0 81.5 £ 8.2 81.5 £9.0
FNN-SWEEP with U-test 779 £ 11.9 803 £ 7.8 812 £75 82.6 £9.3 81.2 £ 8.5
FNN-SWEEP without screening 779 £ 11.9 80.3 £ 7.8 81.8 + 8.0 844+ 9.0 83.5 £ 8.7
kNN with PART 80.3 £ 11.8 753 £ 11.8 76.5 + 11.8 80.0 + 12.3 77.6 £ 12.5
kNN with S2N 79.1 £ 12.8 829 £+ 12.8 82.6 £ 12.5 79.7 £ 9.8 79.4 + 9.1
kNN with U-test 79.1 £ 12.8 84.1 £9.9 82.1 £9.0 81.5 £ 10.5 81.8 £ 10.8
kNN without screening 79.1 £ 12.8 794 + 124 80.0 £ 11.3 78.8 + 10.7 81.5+93
MRA with PART 774 £ 11.2 79.4 + 10.9 79.4 + 10.3 753 £ 114 64.1 £ 8.2
MRA with S2N 779 £ 11.1 80.6 £+ 8.8 832 £ 7.7 74.7 + 9.6 64.7 £ 8.2
MRA with U-test 779 £ 11.1 80.6 £+ 8.8 83.5 £ 8.0 76.2 £ 9.7 67.1 £7.0
MRA without screening 779 £ 11.1 80.6 £+ 8.8 83.8 £ 8.2 762 £ 7.0 66.8 £ 6.8
WYV with PART 79.7 £ 10.7 76.5 £ 12.5 824 £7.0 753 + 8.6 724 £ 11.2
WYV with S2N 782 + 11.2 835+ 7.5 70.9 + 13.1 71.2 £ 12.6 70.6 + 10.1
WYV with U-test 782 £ 11.2 85.6 £5.8 76.2 + 10.7 732 £ 142 762 £ 11.5
WYV without screening 782 + 11.2 78.8 + 7.9 76.2 + 13.6 77.1 £ 10.7 853+ 94

The average blinded accuracies and their S.D.s were calculated from 10 combination models constructed by PIM.

2 The highest accuracy.
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5000, and the learning rate was set to 0.1, these values are the
same as those reported by Ando et al. [1].

2.9. Model construction with parameter selection

The parameter increasing method (PIM) [17] was used to
select input combinations for model construction of FNN-
SWEEP, SVM, kNN, MRA, and WYV. This was done as
follows.

First, we predicted the subtype of each sample by using the
prediction model with a single input. Prediction models for each
probe were constructed in a series, and all the probes were
ordered based on the accuracy of the constructed models. In
the next step, the probe having the highest accuracy level was
used for constructing a combination model.

Second, we selected a partner probe for the probe selected
in the first step in order to increase the prediction accuracy. To
accomplish this, we constructed a two-input model in which
a ranked probe was designated as input 1, and input 2 (part-
ner probe) was selected to provide the highest training accuracy
while applying FNN-SWEEP (or SVM, kNN, MRA, and WV)
and PIM to the modeling data. By repeating this step, a com-
bination of Nauribute candidate probes was identified for use as
input probes in the model construction.

Finally, combinations of Nyibute probes, i.e. from the first to
the Nyribueth probe were evaluated. We constructed Nygribute
predictor models, beginning with one input using only the
first-selected probe to Nyyribute inputs using all the Nagribute
probes. The predictor models were specifically constructed
by using a backpropagation algorithm for FNN-SWEEP or
quadratic programming for SVM. The performance of the pre-
diction models was evaluated by applying them to the blinded
data set.

For the two gene expression profile data, the genes with the
first to the 10th highest accuracies were used as the first inputs
for the construction of the 10 combination models by PIM. The
S.D.s of blinded accuracies were calculated by using ones of
these 10 combination models.

2.10. PART-BFCS method

Previously, we developed PART filtering method by modify-
ing PART [18,19]. And, we developed and combined the PART
filtering method as a gene filtering method and BFCS as a mod-
eling method. In this PART-BFCS method, PART first preselects
the genes that show small variances within a class. Then, BFCS
rapidly selects these genes to build a highly accurate and reliable
predictor.

PART has two important parameters, vigilance and distance
parameters. The vigilance parameter was optimized so that mod-
eling samples clustered well. The distance parameter was used
to control the number of extracted genes. The genes extracted
by PART showed low standard deviation (S.D.) in lower gene
expression class. The predictor using genes with low S.D. in
lower class showed high performance [5].

In BFCS model, one-input FNN models on the basis of neu-
ral network and fuzzy logic, were used as weak learners. FNN

Table 2
Frequency of construction of high performance model

Methods

Leukemia® CNSP
BFCS with PART 4/10 13/30
BFCS with S2N 0/10 3/30
BFCS with U-test 0/10 3/30
BFCS without screening 0/10 3/30
SVM with PART 2/10 2/30
SVM with S2N 1/10 2/30
SVM with U-test 2/10 0/30
SVM without screening 0/10 0/30
FNN-SWEEP with PART 0/10 3/30
FNN-SWEEP with S2N 0/10 0/30
FNN-SWEEP with U-test 0/10 0/30
FNN-SWEEP without screening 0/10 0/30
kNN with PART 0/10 0/30
kNN with S2N 0/10 0/30
kNN with U-test 0/10 0/30
kNN without screening 0/10 0/30
MRA with PART 0/10 0/30
MRA with S2N 0/10 0/30
MRA with U-test 0/10 0/30
MRA without screening 0/10 0/30
WV with PART 0/10 1/30
WYV with S2N 0/10 2/30
WV with U-test 0/10 1/30
WYV without screening 0/10 0/30

? Ten combination models from first to 10th models were constructed by PIM
for each method in five-inputs. The accuracies of the models with first and second
highest performance were 100% (=100 x 34/34) and 97.1% (=100 x 33/34),
respectively. The number of the models with 100% or 97.1% accuracies were
counted from 10 combination models.

b Ten combination models from first to 10th models were constructed by PIM
for each method and each set (of three-fold cross-validation) in four-inputs.
The accuracies of the models with first and second highest performance were
86.7% (=100 x 13/15) and 85.7% (=100 x 12/14), respectively. The number of
the models with 86.7% or 85.7% accuracies, were counted from 30 combination
models for three data sets.

has three types of connection weights (wc, wg, and wy). These
parameters were optimized as mentioned in section of BFCS
algorithm. The only one parameter that should be optimized
is the number of input in boosting model. This parameter was
optimized by using the number of samples.

3. Results and discussion

3.1. Comparison of the performance of PART-BFCS and
the other methods

The performances of wrapper approaches with (filter
approaches as class predictors were investigated. For compari-
son, many combinations of various wrapper approaches, such as
BFCS, SVM, FNN-SWEEP, k-nearest neighbor (k<NN), multi-
ple regression analysis (MRA), and weighted voting (WV), and
various filtering approaches, such as U-test, S2N, PART, and no
screening, were constructed. The performance of the predictors
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Table 3
Comparison of cross-validation accuracies on various combination methods for CNS tumor data set (%)

Inputs

1 2 3 4
BFCS with PART 65.6 £ 11.1 709 £ 143 745 £9.7 773* + 8.8
BFCS with S2N 67.5 £ 11.5 674 £ 132 71.0 £9.7 71.1 £9.5
BFCS with U-test 67.5 £ 11.5 66.3 £ 12.8 712 £9.2 713 £ 9.1
BFCS without screening 67.5 £ 11.5 66.3 £ 12.8 712 £92 713 £9.1
SVM with PART 65.1 £ 149 65.6 £ 129 653 £ 129 65.8 £ 14.2
SVM with S2N 68.0 £ 11.6 66.8 + 9.0 69.5 £ 8.1 68.3 £10.3
SVM with U-test 67.6 £ 11.9 66.3 £ 10.1 68.0 + 8.8 65.7 £ 8.1
SVM without screening 67.6 £ 11.9 659 £ 9.6 68.2 £+ 8.6 66.3 £ 10.0
FNN-SWEEP with PART 65.1 £ 11.3 66.5 £+ 10.3 65.5 £ 12.6 622 + 13.1
FNN-SWEEP with S2N 67.2 £ 12.6 629 £ 11.9 60.9 £+ 10.4 59.1 £ 12.9
FNN-SWEEP with U-test 67.0 £ 12.6 625 £ 11.1 60.4 + 10.1 59.1 + 144
FNN-SWEEP without screening 67.0 £ 12.6 62.7 £ 10.6 60.3 £ 11.6 587 £ 11.9
kNN with PART 60.3 £ 11.6 59.3 £ 10.5 589 £ 122 59.8 £ 114
kNN with S2N 59.5 £ 11.9 572 £ 10.8 55.6 £ 10.9 55.0 £ 10.6
kNN with U-test 59.5 £ 109 58.6 £ 11.5 58.0 £ 9.9 57.1 £ 11.1
kNN without screening 58.0 £ 12.6 56.6 £ 11.7 575 £9.7 575 £9.0
MRA with PART 652 £ 11.2 642 £ 11.1 61.8 £ 14.6 552 £11.8
MRA with S2N 672 £ 119 63.3 £ 12.7 63.0 £ 10.9 56.9 £ 9.6
MRA with U-test 67.2 £ 11.9 61.8 £ 11.6 60.1 £ 10.4 55.1 £ 12.1
MRA without screening 67.2 £ 11.9 62.7 £ 11.3 59.1 £ 10.3 543 £ 13.6
WYV with PART 61.7 £ 143 63.9 £+ 12.9 60.9 £+ 13.0 64.6 £ 12.0
WYV with S2N 63.3 £ 13.8 63.3 £ 12.1 62.6 £ 12.1 63.1 £11.3
WYV with U-test 66.1 + 11.4 62.6 £9.3 62.3 £ 104 63.2 £ 10.1
WYV without screening 66.1 £ 11.4 62.6 £ 11.4 63.0 £ 11.3 63.6 + 9.6

The average blinded accuracies and their S.D.s were calculated from 10 combination models constructed by PIM.

4 The highest accuracy.

was compared on the basis of the accuracy by using a blinded
data set that was not used for modeling. By using 10 independent
class predictor models, the average accuracy for blinded data set
was calculated for the CNS and leukemia data sets.

The results of leukemia data are shown in Table 1. The result
shows that average accuracy of the PART-BFCS models is the
highest as shown in Table 1. In this experiment, top 10 indepen-
dent class predictor models were constructed by PIM (parameter
increasing method) [17] for each condition and data set. And
the numbers of construction of high performance model (100%
or 97.1% accuracy) were counted for each method as shown in
Table 2. Four models among 10 models of five-input show 97.1%
or more accuracy for PART-BFCS method. Next, the results for
CNS data are shown in Table 3. The inputs used in the predictors
were gradually increased from the one-input model to four-input
model. As shown in Table 3, the PART-BFCS method clearly
showed high performance when compared with the other meth-
ods in all input models with the exception of one-input model.
The accuracy of the PART-BFCS method gradually increased
and eventually, it reached 77.3% in the four-input models. On
the other hand, SVM, FNN-SWEEP, kNN, MRA, and WV with
various filtering showed an accuracy of 55.1-68.3%, which was
lower than that of PART-BFCS. Average accuracy of three-input
SVM models with S2N was the highest except BFCS models
(69.5%). By using U-test, however, we found that the accuracy
of BFCS with PART was significantly (P=5.94 x 10~%) higher

than one of SVM with S2N. In the four-input models, PART-
BFCS method could constructed the most models that showed
accuracies were 86.7% (first highest) or 85.7% (second high-
est), as shown in Table 2. These results could be explained by
the facts that PART is the useful filtering method that could
improve performances of simple models [5], BFCS is the mod-
eling method in which the model is constructed by assembling
simple models, such as one-input FNN. Otherwise, complex
models are constructed by other modeling methods. Table 2
shows that the most high performance models were constructed
by PART-BFCS method. Therefore, combination of PART and
BFCS is the best one.

3.2. Evaluation of prediction results using improved RIgrcs

PART-BFCS method can estimate assurance of results by
calculating reliability index for BFCS (RIgrcs). In the present
study, we propose improved RIggcs (new RIggcs) by modifying
equation of Rlgpcs (old Rlgpcs) for more practical cancer
diagnosis. For acute leukemia and CNS data, both RIggcs of
each patient in blinded data were calculated (Fig. 3). Fig. 3
shows distributions of correct and incorrect sample for old and
new RIgpcs. It is necessary that there are many incorrect sam-
ples in low RIgpcs and many correct samples in high Rlgpcs.
For old RIgrcs, two distributions are not separated (P =0.169,
0.311), as shown in Fig. 3A and B. On the other hand, they
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Fig. 3. Comparison of old and new RIgrcs. White bars and gray bars indicate the distribution ratio of correct sample and incorrect samples, respectively. The P-values
were calculated by Mann—Whitney test and indicate the difference in RIgpcg distribution between the correct and incorrect samples.

are clearly separated (P=6.44 x 10712, 1.95 x 10~?) for new
RIgfcs, as shown in Fig. 3B and D. Based on this new index,
the discriminated group with over 90% prediction accuracy
was separated from the others. For example, the patients who
had new RlIggcs > 35 corresponded to 48.5% of all patients for
leukemia data, and an accuracy of 99.4% was achieved. And, the
patients who had new RIgpcs > 5 corresponded to 29.3% of all
patients for CNS data, and a accuracy of 90.7% was achieved.
This result implies new RIggrcs more practical than old one.
Old RI is mean distance from boundary line for each gene.
BFCS is one of voting methods by assembling simple methods.
Improved Rl is modified by adding each signs of simple models
in the BFCS model. Thus, improved RI is superior to old RI.

3.3. Comparison of selected genes with known prognostic
marker genes

We investigated the presence of previously reported prognos-
tic marker genes among the genes selected in the 10 constructed
combinations of four-input PART-BFCS models. There were
total of 40 genes in 10 models. Some genes were selected sev-
eral times. In the case of PART-BFCS, 14 genes among 40 genes
are independent, as shown in Table 4. Three genes among these
14 genes were reported to be prognostic markers for cancer: The
CCNDI1 gene was reported by Tan et al. [20] to be a high-risk
marker gene. CCNDI plays an important role in regulating the

progress of the cell division during the G1 phase of the cell
cycle. Overexpression of CCND] correlates with sensitivity to
cisplatin [21]. The LIF gene was reported by Park et al. [22] to
be a low-risk marker gene. LIF induces growth arrest and dif-
ferentiation of cells. The USP4 (UNPH) gene was reported by
Frederick et al. [23] to be a low-risk marker gene. These obser-
vations accurately matched with low or high gene expression of
the above-mentioned three marker genes, as shown in Table 4.
These findings suggest that the PART-BFCS method may be
used to identify new marker genes.

3.4. Comparison of genes used in PART-BFCS predictors
and other predictors for CNS data

We firstly compared FNN-SWEEP and BFCS to investigate
numerical character of the genes selected by PART-BFCS. Both
FNN-SWEEP and BFCS are based on FNN. The one-gene pre-
dictors were constructed for each gene from second input to
fourth input in the two methods. And then, average model-
ing accuracy of one-gene predictors for 10 combinations, was
calculated (Table 5). The BFCS genes used as one-gene predic-
tors showed clearly higher accuracy than FNN-SWEEP ones, as
shown in Table 5. The average modeling accuracies of the genes
from second to fourth were 83.3%, 77.3% and 79.0% for BFCS,
and 72.0%, 68.7% and 65.7% for FNN-SWEEP, respectively.
The PIM method was used in the FNN-SWEEP. This method is
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Table 4
The genes used in PART-BFCS class predictor for one set of CNS tumor data set
Accession number Gene name  Descriptions Times of Average intensity ~ Average Threshold ~ Prognostic
selection of surviving intensity of of model® markers
patients® dead patients®
U20657 USP4 Ubiquitin specific protease 4 9 796 127 391 d
(proto-oncogene)
X59798 CCND1 Cyclin DI (PRAD1: parathyroid 6 0 2176 330 ¢
adenomatosis 1)
M73547 C5orfl8 Chromosome 5 open reading frame 18 6 1439 275 797
AB000460 C4orf8 Chromosome 4 open reading frame 8 4 2429 1094 1605
L33243 PKD1 Polycystic kidney disease 1 (autosomal 4 1498 228 815
dominant)
X13967 LIF Leukemia inhibitory factor (cholinergic 2 464 5 206 f
differentiation factor)
L10333 RTNI1 Reticulon 1 2 4483 821 1747
D30756 M17S2 Membrane component, chromosome 17, 1 591 59 236
surface marker 2
D83018 NELL2 NEL-like 2 (chicken) 1 2710 851 1416
HG2238-HT2321 NUMALI Nuclear mitotic apparatus protein 1, alt. 1 2833 1197 1721
splice form 2
104046 CALM3 Calmodulin 3 (phosphorylase kinase, delta) 1 3287 1022 1753
S76475 NTRK3 Neurotrophic tyrosine kinase, receptor, type 1 2002 96 687
3 (TrkC)
U25849 ACPI Acid phosphatase 1, soluble 1 206 1082 602
Y09616 CES2 Carboxylesterase 2 (intestine, liver) 1 2894 1065 1706

4 The average intensity of gene expression in the patients predicted as survivors.

b The average intensity of gene expression in the patients predicted as dead.
¢ The threshold of gene expression in the weak learner model.

4 The marker gene reported by Frederick et al. [23] as a low-risk marker.

¢ The marker gene reported by Tan et al. [20] as a high-risk marker.

 The marker gene reported by Park et al. [22] as a low-risk marker.

very useful to select input combination that shows high accuracy
by combining low accuracy inputs. But, the application of PIM to
high dimensional data, such as microarray data, may cause over-
fitting. On the other hand, the boosting used in the BFCS is the
method that can construct high-accuracy predictor by combining
one-gene predictors. Thus, low-accuracy one-gene predictors
are hardly selected. It may be for this reason that BFCS showed
high performance.

Next, BFCS were compared with PART-BFCS. Average of
gene expression for the 40 genes in 10 combinations of four-
input models, was calculated for each class (survivors or dead).
And average standard deviation (S.D.) of lower gene expression
class for 40 genes is shown in Table 6. Table 6 shows that the
S.D. of PART-BFCS was lower than one of BFCS. The values
of S.D.s were 0.57 for BFCS and 0.39 for PART-BFCS. This
tendency is corresponding to the fact previously reported by us
[5]. The genes with low S.D. in lower class may show high
generalization performance.

3.5. IF-THEN rules extracted from PART-BFCS model

After modeling, the IF-THEN rules for CNS prognosis were
obtained from the model of highest blind accuracy among the
10 combinations. The model includes the CCNDI gene and
USP4 (UNPH) gene as known prognostic markers. The IF-
THEN rules have been obtained as a matrix that is classified
based on expression level of such selected genes (Fig. 4). Using

this matrix, simple and precise rules were obtained as follows.
The simplest rule is that patients with high expression of CCND 1
gene are likely to exhibit poor prognosis. Six patients showed
high expression of CCNDI gene and five of them were actually
dead patients, which corresponds to 28% (5/18) of all the dead

Table 5
Average modeling accuracy of one-input models between BFCS and FNN-
SWEEP (%)

Order of selection

Second Third Fourth
BFCS 83.3 77.3 79.0
FNN-SWEEP 72.0 68.7 65.7

In this experiment, 10 combinations of four-input models were constructed.
Three genes from second to fourth in four-input were selected as combination
of genes for each method. The modeling accuracies when these three genes were
used alone as one-gene predictors, were calculated for 10 combinations.

Table 6
Average S.D. of gene expression in lower class between BFCS and PART-BFCS

Methods The S.D.s of lower class
BFCS 0.56
PART-BFCS 0.39

Average of gene expression for the 40 genes in 10 combinations of four-input
models were calculated for each class (survivors or dead). And then, aver-
age standard deviation (S.D.) of lower gene expression class for 40 genes was
calculated.



108 H. Takahashi et al. / Biochemical Engineering Journal 33 (2007) 100-109

CCNDI
[ High
PEDI
Low High Low | High
5 3(M), 4(B), (M), 6(B)
2| 8(M), 9(B), 10(M), 11(B), 16(M) " | 5(M)
=l |3 18(M)
K 12(M), 13(M), 17(M)
SHNE [€@DY) 380, ), 4700, 300\,
S I B = ) 57(B)
| 1213 190M) A0, 49(M) 1m) | 150m)
Slg, 14(BD 200M), 21(M), 37(B),
= sl o |39m, 4iM), 430), 450M), )
o LR 16(B), 48(B), 52(M), 53(B), 26
580M), 59(M)

Fig. 4. IF-THEN rules in the top two model of PART-BFCS. Since the expression level of each gene can be divided into either high or low groups using fuzzy logic,
this model comprised 16 (=2*) fuzzy rules. Numbers in each matrix are identical to the patient numbers previously described by Pomeroy et al. [7]. Numbers in
bold type and italic type indicate the poor and good prognosis patients, respectively. Patient numbers are placed in the matrix according to the expression levels of
each patient. Patient numbers in the circle represent incorrect classification by the PART-BFCS. (B) indicates sample in blinded data set. (M) indicates sample in

modeling data set.

patients. Next simple rule is that patients with low expression
of CCND] gene and low expression of USP4 (UNPH) gene are
likely to exhibit poor prognosis. Nineteen patients showed low
expression of USP4 (UNPH) gene and 12 of them were actu-
ally dead patients, which corresponds to 92% (12/13) of dead
patients showing low expression of the CCNDI gene. Nineteen
patients showed high expression of USP4 (UNPH) gene and low
expression of CCND1 gene, and 18 of them (95%) were actually
surviving patients, which corresponds to 69% (18/26) of all the
surviving patients. It was found that surviving or dead patients
were clustered at specific parts of the matrix. The following rule
was also found: patients were likely to exhibit a poor progno-
sis when the USP4 (UNPH) expression was low and C5orf18
expression was low. It was also found that on this matrix, two
patients showing poor prognosis were incorrectly predicted as
showing good prognosis. This may be due to the inability for
complete removal of their tumors by CNS surgery.

4. Conclusions

In the present study, we investigated combinations of vari-
ous filter and wrapper approaches, and found that combination
method of PART and BFCS (a kind of boosting) is sig-
nificantly superior to other methods with regard to high
prediction accuracy for construction of class predictor from
gene expression data. This method could select some marker
genes related to cancer outcome. In addition, we proposed
improved RlIgpcs of PART-BFCS. Based on this new index,
the discriminated group with over 90% prediction accuracy
was separated from the others. It is necessary that there are
about 90% or more prediction accuracy in the practical diag-
nosis application. These results suggest that the PART-BFCS
method has a high potential to function as a new method of
marker gene selection for the diagnosis of patients, using high
dimensional data such as DNA microarray, mass spectrometry
(MS), and two-dimensional polyacrylamide gel electrophoresis
(2D-PAGE).
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