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bstract

An optimal and individualized treatment protocol based on accurate diagnosis is urgently required for the adequate treatment of patients. For
his purpose, it is important to develop a sophisticated algorithm that can manage large amount of data, such as gene expression data from DNA

icroarray, for optimal and individualized diagnosis. Especially, marker gene selection is essential in the analysis of gene expression data.
In the present study, we developed the combination method of projective adaptive resonance theory and boosted fuzzy classifier with SWEEP

perator method for model construction and marker selection. And we applied this method to microarray data of acute leukemia and brain tumor.
he method enabled the selection of 14 important genes related to the prognosis of the tumor. In addition, we proposed improved reliability index
or cancer diagnostic prediction of blinded subjects. Based on the index, the discriminated group with over 90% prediction accuracy was separated
rom the others.

PART-BFCS with improved RIBFCS method does not only show high performance, but also has the feature of reliable prediction further. This result
uggests that PART-BFCS with improved RIBFCS method has the potential to function as a new method of class prediction for diagnosis of patients.

2006 Elsevier B.V. All rights reserved.
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. Introduction

Cancer is a major cause of disease related to human deaths
n many developed countries. Frequently, the prognosis of can-
er patients with the same clinical diagnosis can be different.
herefore, it is important that the prognosis of cancer patients is
ccurately determined, and an adequate treatment is proposed.
owever, the sensitivity of cancer patients to radiotherapy and/or

hemotherapy is determined by complex causality involving
ultiple factors, and not a single factor because the mechanisms

f cancer development (or malignancy) are extremely complex.
ene expression data from DNA microarray are individualized

nd are useful in the diagnosis and prognosis of diseases [1].

owever, to conduct analysis, it is necessary to select signifi-

antly differentially expressed genes that are strongly related to
iagnosis or prognosis of disease because the performance of

∗ Corresponding author. Tel.: +81 52 789 3215; fax: +81 52 789 3214.
E-mail address: honda@nubio.nagoya-u.ac.jp (H. Honda).
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lassification analysis can decline due to such large quantities
f data.

Feature selection has been performed in order to screen can-
idate genes for modeling. There are two types of approaches—
rapper approach and filter approach. In the former approach,

eatures (genes) are selected as a part of mining algorithms,
uch as support vector machines (SVM) [2], fuzzy neural net-
ork (FNN) combined with SWEEP operator (FNN-SWEEP)
ethod [1], and boosted fuzzy classifier with SWEEP operator

BFCS) method [3]. On the other hand, in the filter approach,
eatures are selected by filtering methods, such as U-test, t-test,
ignal-to-noise statistic (S2N) [4] and projective adaptive res-
nance theory (PART) [5], prior to the application of mining
lgorithms.

These methods were often used alone in previous studies. In
he present study, we combined various wrapper and filtering

pproaches and then, we applied these methods to gene expres-
ion profile data of leukemia and central nervous system tumor. It
s necessary that specific and essential marker genes are selected
or cancer classification and diagnosis. Minimum gene sets with-

mailto:honda@nubio.nagoya-u.ac.jp
dx.doi.org/10.1016/j.bej.2006.08.004
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ut false positive ones should be extracted. Therefore, various
ethods were compared under the condition of small inputs. The

ombination method of PART and BFCS was the best under this
ondition.

. Materials and methods

.1. Data processing

We used two kinds of gene expression profiles. The first
ne is the gene expression profiles, obtained from http://www.
enome.wi.mit.edu/cgi-bin/cancer/datasets.cgi, reported by
olub et al. [4]. The data set comprised 7129 human genes

probe sets) and 72 patients (47 acute lymphoblastic leukemia
ALL) and 25 acute myeloid leukemia (AML)), which were
btained from acute leukemia patients at the first time of
iagnosis. In this experiment, the data set was partitioned into
ne data set comprised of two groups: 38 patients (27 ALL,
1 AML) as a modeling data set for constructing the class
rediction model (predictor) and 34 patients (20 ALL, 14 AML)
s a blinded data set for evaluating the constructed predictor.
e excluded those genes for which all the 72 patients showed

n intensity of less than 1000 signals [6] prior to applying the
arious filtering methods. Thus, 2476 genes were selected for
he present study.

The second one is gene expression data set of medulloblas-
oma, which is a type of central nervous system (CNS) tumor,
btained from http://www.genome.wi.mit.edu/MPR/CNS,
eported by Pomeroy et al. [7]. Patients with medulloblastoma
re treated by combinations of surgery, radiotherapy, and
hemotherapy. In the present data set, the following three drugs
re mainly used for chemotherapy: vincristine, cisplatin, and
ytoxan. Therefore, by using gene selection and prognosis
odeling proposed in the present study, the gene related to the

reatment response can be extracted. The data set comprised
129 human genes (probe sets) and 60 patients from whom
umor specimens were obtained by surgery. Among these 60
atients, a few patients (16) had a short follow-up period.
herefore, we used the data of the remaining 44 patients for

he construction of a 4-year survival prediction model. Of these
4 patients, 26 patients remained alive after 4 years and 18
atients had died. In this experiment, the data set was randomly
artitioned into three data sets consisting of two groups: 30 or
9 patients (18 or 17 survivors, 12 dead) as a modeling data set
or constructing the class prediction model (predictor) and 14
r 15 patients (8 or 9 survivors, 6 dead) as a blinded data set for
valuating the constructed predictor. We excluded those genes
or which all the 44 patients showed the intensity of less than
000 signals prior to applying the various filtering methods.
hus, 2713 genes were selected for the present study.

In order to validate performance of models, 10 independent
redictors were constructed from these genes by the parameter

ncreasing method (PIM). The prediction accuracy of the blinded
ata set was utilized for comparison of model performance, and
he accuracy was calculated as the average of 10 independent
ombination predictors.

R
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A total of 1000 genes were selected by various gene screening
ethods, e.g. Mann—Whitney’s U-test, signal-to-noise statistic

S2N), and projective adaptive resonance theory (PART), prior
o the model construction step. Subsequently, various modeling

ethods were applied as described in the following sections.

.2. Determination of optimal input number

When a large number of inputs are provided in the model,
he model is excess fitted to the training data and the robust-
ess is lost. Therefore, in order to construct a model with
elatively high robustness, we assumed that the number of IF-
HEN rules should not exceed the sample number [1]. Then, we
sed a stopping condition in the present study such that the total
nput number became Nattribute in all the selected weak learners;

attribute is defined according to the following condition:

attribute < log2 N (1)

here Nattribute indicates the optimum selected attribute number.
Using Eq. (1), Nattribute is 4 since N is 30 (or 29) for the CNS

ata set and 5 since N is 38 for the leukemia data set.

.3. Boosted fuzzy classifier with SWEEP operator (BFCS)

Boosting was proposed by Schapire [8], and thus far, sev-
ral derivative boosting algorithms [9–11] have been developed.
oosting is useful for class prediction using high dimensional

nputs and is very fast algorithms.
In the previous study, we developed a boosted fuzzy classi-

er with SWEEP operator (BFCS) method [3] on the basis of
daBoost [9], which is the most basic boosting algorithm. This
ethod enables the evaluation of reliability of the predictions

or each patient. On the other hand, it is difficult to evaluate the
eliability of the predicted results of the conventional boosting.

Fig. 1 shows the structure of BFCS. BFCS is composed of
ne-input type I fuzzy neural network (FNN) models [12]. In the
resent study, one-input FNN models were used as weak learn-
rs in the BFCS model, and they were combined by connection
eights, which were determined by the AdaBoost algorithm.
NN has three types of weight parameters (wc, wg, and wf)
12]. In the present study, parameter wg is a constant value
=2.0 ln((1.0 + 0.995)/(1.0 – 0.995))) [12], and wc is a thresh-
ld that has the best odds ratio in the case that only one input
as used. wc and wg were determined; wf was calculated by the
WEEP operator method [12].

.3.1. Reliability index for BFCS (old RIBFCS)
Reliability index (RI) based on fuzzy inference has been pro-

osed to evaluate the result of class prediction by Huang and Li
13]. We have developed a reliability index for BFCS (RIBFCS)
y modifying RI for boosting.

We modified RI equations as follows:
IBFCS =
{

INT(diffBFCS · 10) + 1, if 0 ≤ diffBFCS < 0.9

10, if diffBFCS ≥ 0.9
(2)

http://www.genome.wi.mit.edu/cgi-bin/cancer/datasets.cgi
http://www.genome.wi.mit.edu/cgi-bin/cancer/datasets.cgi
http://www.genome.wi.mit.edu/MPR/CNS
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Fig. 1. Concept

here

iffBFCS =

∑T
t

{
αt · argmin(diffv)

v ∈ Mt

}
∑T

t αt

(3)

here T indicates the number of weak learners in the BFCS
odel, Mt indicates set of input variables in tth selected weak

earner, αt indicates the connection weight of the tth selected
odel in the construction of BFCS models, and diffv is defined

y the following equation:

iffv = uhighest(Xv) − unext highest(Xv) (4)

here v indicates the vth input in the BFCS model and u(xv)
ndicates the grade of the fuzzy membership function when the
th input xv was inputted. It is defined by the following equation
12]:

v = 1

1 + exp{−wg(xv + wc)} (5)

IBFCS is calculated for each example. Here, the greater RIBFCS
he sample has, the more reliable its prediction.

.3.2. Improved reliability index for BFCS (new RIBFCS)
In the present study, we propose improved reliability index by

odifying equation of RIBFCS for more practical cancer diagno-
is. For previous reliability index, argmin(diffv)s in each weak
earner, that mean distance from boundary line, are multiplied
y αt and summed. For improved reliability index, argmin(diffv)
n weak learner that output opposite to integrated model, is used
s negative value. It is defined by the following equation:{ }

iffBFCS =

∑T
t αt · gt · argmin(diffv)

v ∈ Mt∑T
t αt

(6)

p
w
T
w

e BFCS model.

here

t =
{

−1, if sign (Ot) �= sign (OI )

+1, if sign (Ot) = sign (OI )
(7)

here Ot indicates output of tth model, and OI indicates output
f integrated model.

.4. k-Nearest neighbor (kNN)

The k-nearest neighbor (kNN) methods are based on a dis-
ance function for pairs of tumor samples, such as the Euclidean
istance. The kNN proceeds as follows to classify blind data
et observations on the basis of the modeling data set. For each
atient in the blind data set (a) finding the k-closest patients in the
odeling data set and (b) predicting the class by majority vote;

hat is, choosing the class that is most common among those
-neighbors. The number of neighbors k = 3 was used because a
imilar cross-validation accuracy of model was obtained in the
odeling data set for various k.

.5. Multiple regression analysis (MRA)

The multiple regression analysis (MRA) is one of conven-
ional methods. The MRA is a concerned with describing and
valuating the relationship between a patient’s outcome and gene
xpression. MRA models are used to help us predict patient’s
utcome by using gene expression data.

.6. Weighted voting (WV)

The weighted voting (WV) method was originally pro-

osed by Golub et al. [4] to manage microarray data. The
eights of each gene were calculated by the signal-to-noise.
he linear models of one gene were assembled with gene
eight.
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.7. Support vector machine (SVM)

The support vector machine (SVM) was originally proposed
y Vapnik and Chervonenkis [14] and is used to avoid the “curse
f dimensionality”. SVM is superior to many other conventional
ethods and is frequently used in bioinformatics. In the present

tudy, the SVM-LIGHT software package [15] was used. It was
odified, and a PIM function was added to select a combination

f inputs. In the present study, the regulatory parameter c was
he default value of SVM LIGHT ((avg(input vector)2)−1). A
inear kernel was used because a similar cross-validation accu-
acy of model was obtained in the modeling data set for various
ernels.

.8. Fuzzy neural network (FNN) combined with SWEEP
perator method (FNN-SWEEP)

The fuzzy neural network (FNN) combined with SWEEP
perator method (FNN-SWEEP method) was also applied for
odel construction. The FNN-SWEEP method was originally

roposed by Noguchi et al. [16] and was modified by Ando
t al. [1] to manage microarray data. FNN has three types
f weight parameters (wc, wg, and wf) [12] as shown in

ig. 2. If wc and wg are fixed, FNN can be treated as multiple

inear regression model in which wf is variable parameter.
herefore, wf was easily optimized without training. In the
NN-SWEEP method, only parameter wf was optimized by

A
w
b
b

able 1
omparison of accuracies on various combination methods for leukemia data set (%)

Inputs

1 2

FCS with PART 77.9 ± 10.7 67.4 ± 7.6
FCS with S2N 78.8 ± 10.6 67.4 ± 7.6
FCS with U-test 78.8 ± 10.6 67.4 ± 7.6
FCS without screening 78.8 ± 10.6 67.4 ± 7.6

VM with PART 77.4 ± 10.0 79.4 ± 7.5
VM with S2N 76.2 ± 11.2 78.5 ± 7.0
VM with U-test 76.2 ± 11.2 78.5 ± 7.0
VM without screening 76.2 ± 11.2 78.5 ± 7.0

NN-SWEEP with PART 77.6 ± 12.2 77.1 ± 13.1
NN-SWEEP with S2N 77.9 ± 11.9 80.3 ± 7.8
NN-SWEEP with U-test 77.9 ± 11.9 80.3 ± 7.8
NN-SWEEP without screening 77.9 ± 11.9 80.3 ± 7.8

NN with PART 80.3 ± 11.8 75.3 ± 11.8
NN with S2N 79.1 ± 12.8 82.9 ± 12.8
NN with U-test 79.1 ± 12.8 84.1 ± 9.9
NN without screening 79.1 ± 12.8 79.4 ± 12.4

RA with PART 77.4 ± 11.2 79.4 ± 10.9
RA with S2N 77.9 ± 11.1 80.6 ± 8.8
RA with U-test 77.9 ± 11.1 80.6 ± 8.8
RA without screening 77.9 ± 11.1 80.6 ± 8.8

V with PART 79.7 ± 10.7 76.5 ± 12.5
V with S2N 78.2 ± 11.2 83.5 ± 7.5
V with U-test 78.2 ± 11.2 85.6 ± 5.8
V without screening 78.2 ± 11.2 78.8 ± 7.9

he average blinded accuracies and their S.D.s were calculated from 10 combination
a The highest accuracy.
Fig. 2. Three-input type-I FNN model.

he SWEEP operator method during the feature selection step.

fter the input combinations were determined, FNN models
ith the selected input combinations were optimized using a
ackpropagation algorithm on model construction step. In the
ackpropagation algorithm, the number of epochs was set to

3 4 5

84.7 ± 7.4 86.5 ± 4.4 89.la ± 7.3
84.4 ± 7.3 85.6 ± 5.7 83.2 ± 2.2
84.4 ± 7.3 85.6 ± 5.7 83.2 ± 2.2
84.4 ± 7.3 85.6 ± 5.7 83.2 ± 2.2

80.0 ± 8.2 80.9 ± 9.7 82.4 ± 8.4
81.8 ± 7.7 83.2 ± 9.0 82.4 ± 9.7
82.6 ± 6.2 84.1 ± 6.7 83.5 ± 8.0
83.5 ± 6.2 84.7 ± 6.4 85.0 ± 7.7

79.7 ± 9.1 80.3 ± 8.1 85.9 ± 7.7
81.8 ± 8.0 81.5 ± 8.2 81.5 ± 9.0
81.2 ± 7.5 82.6 ± 9.3 81.2 ± 8.5
81.8 ± 8.0 84.4 ± 9.0 83.5 ± 8.7

76.5 ± 11.8 80.0 ± 12.3 77.6 ± 12.5
82.6 ± 12.5 79.7 ± 9.8 79.4 ± 9.1
82.1 ± 9.0 81.5 ± 10.5 81.8 ± 10.8
80.0 ± 11.3 78.8 ± 10.7 81.5 ± 9.3

79.4 ± 10.3 75.3 ± 11.4 64.1 ± 8.2
83.2 ± 7.7 74.7 ± 9.6 64.7 ± 8.2
83.5 ± 8.0 76.2 ± 9.7 67.1 ± 7.0
83.8 ± 8.2 76.2 ± 7.0 66.8 ± 6.8

82.4 ± 7.0 75.3 ± 8.6 72.4 ± 11.2
70.9 ± 13.1 71.2 ± 12.6 70.6 ± 10.1
76.2 ± 10.7 73.2 ± 14.2 76.2 ± 11.5
76.2 ± 13.6 77.1 ± 10.7 85.3 ± 9.4

models constructed by PIM.
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Table 2
Frequency of construction of high performance model

Methods

Leukemiaa CNSb

BFCS with PART 4/10 13/30
BFCS with S2N 0/10 3/30
BFCS with U-test 0/10 3/30
BFCS without screening 0/10 3/30

SVM with PART 2/10 2/30
SVM with S2N 1/10 2/30
SVM with U-test 2/10 0/30
SVM without screening 0/10 0/30

FNN-SWEEP with PART 0/10 3/30
FNN-SWEEP with S2N 0/10 0/30
FNN-SWEEP with U-test 0/10 0/30
FNN-SWEEP without screening 0/10 0/30

kNN with PART 0/10 0/30
kNN with S2N 0/10 0/30
kNN with U-test 0/10 0/30
kNN without screening 0/10 0/30

MRA with PART 0/10 0/30
MRA with S2N 0/10 0/30
MRA with U-test 0/10 0/30
MRA without screening 0/10 0/30

WV with PART 0/10 1/30
WV with S2N 0/10 2/30
WV with U-test 0/10 1/30
WV without screening 0/10 0/30

a Ten combination models from first to 10th models were constructed by PIM
for each method in five-inputs. The accuracies of the models with first and second
highest performance were 100% (=100 × 34/34) and 97.1% (=100 × 33/34),
respectively. The number of the models with 100% or 97.1% accuracies were
counted from 10 combination models.

b Ten combination models from first to 10th models were constructed by PIM
for each method and each set (of three-fold cross-validation) in four-inputs.
The accuracies of the models with first and second highest performance were
86.7% (=100 × 13/15) and 85.7% (=100 × 12/14), respectively. The number of
t
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000, and the learning rate was set to 0.1, these values are the
ame as those reported by Ando et al. [1].

.9. Model construction with parameter selection

The parameter increasing method (PIM) [17] was used to
elect input combinations for model construction of FNN-
WEEP, SVM, kNN, MRA, and WV. This was done as
ollows.

First, we predicted the subtype of each sample by using the
rediction model with a single input. Prediction models for each
robe were constructed in a series, and all the probes were
rdered based on the accuracy of the constructed models. In
he next step, the probe having the highest accuracy level was
sed for constructing a combination model.

Second, we selected a partner probe for the probe selected
n the first step in order to increase the prediction accuracy. To
ccomplish this, we constructed a two-input model in which
ranked probe was designated as input 1, and input 2 (part-

er probe) was selected to provide the highest training accuracy
hile applying FNN-SWEEP (or SVM, kNN, MRA, and WV)

nd PIM to the modeling data. By repeating this step, a com-
ination of Nattribute candidate probes was identified for use as
nput probes in the model construction.

Finally, combinations of Nattribute probes, i.e. from the first to
he Nattributeth probe were evaluated. We constructed Nattribute
redictor models, beginning with one input using only the
rst-selected probe to Nattribute inputs using all the Nattribute
robes. The predictor models were specifically constructed
y using a backpropagation algorithm for FNN-SWEEP or
uadratic programming for SVM. The performance of the pre-
iction models was evaluated by applying them to the blinded
ata set.

For the two gene expression profile data, the genes with the
rst to the 10th highest accuracies were used as the first inputs
or the construction of the 10 combination models by PIM. The
.D.s of blinded accuracies were calculated by using ones of

hese 10 combination models.

.10. PART-BFCS method

Previously, we developed PART filtering method by modify-
ng PART [18,19]. And, we developed and combined the PART
ltering method as a gene filtering method and BFCS as a mod-
ling method. In this PART-BFCS method, PART first preselects
he genes that show small variances within a class. Then, BFCS
apidly selects these genes to build a highly accurate and reliable
redictor.

PART has two important parameters, vigilance and distance
arameters. The vigilance parameter was optimized so that mod-
ling samples clustered well. The distance parameter was used
o control the number of extracted genes. The genes extracted
y PART showed low standard deviation (S.D.) in lower gene

xpression class. The predictor using genes with low S.D. in
ower class showed high performance [5].

In BFCS model, one-input FNN models on the basis of neu-
al network and fuzzy logic, were used as weak learners. FNN

B
p
v
s

he models with 86.7% or 85.7% accuracies, were counted from 30 combination
odels for three data sets.

as three types of connection weights (wc, wg, and wf). These
arameters were optimized as mentioned in section of BFCS
lgorithm. The only one parameter that should be optimized
s the number of input in boosting model. This parameter was
ptimized by using the number of samples.

. Results and discussion

.1. Comparison of the performance of PART-BFCS and
he other methods

The performances of wrapper approaches with filter
pproaches as class predictors were investigated. For compari-
on, many combinations of various wrapper approaches, such as

FCS, SVM, FNN-SWEEP, k-nearest neighbor (kNN), multi-
le regression analysis (MRA), and weighted voting (WV), and
arious filtering approaches, such as U-test, S2N, PART, and no
creening, were constructed. The performance of the predictors
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Table 3
Comparison of cross-validation accuracies on various combination methods for CNS tumor data set (%)

Inputs

1 2 3 4

BFCS with PART 65.6 ± 11.1 70.9 ± 14.3 74.5 ± 9.7 773a ± 8.8
BFCS with S2N 67.5 ± 11.5 67.4 ± 13.2 71.0 ± 9.7 71.1 ± 9.5
BFCS with U-test 67.5 ± 11.5 66.3 ± 12.8 71.2 ± 9.2 71.3 ± 9.1
BFCS without screening 67.5 ± 11.5 66.3 ± 12.8 71.2 ± 9.2 71.3 ± 9.1

SVM with PART 65.1 ± 14.9 65.6 ± 12.9 65.3 ± 12.9 65.8 ± 14.2
SVM with S2N 68.0 ± 11.6 66.8 ± 9.0 69.5 ± 8.1 68.3 ± 10.3
SVM with U-test 67.6 ± 11.9 66.3 ± 10.1 68.0 ± 8.8 65.7 ± 8.1
SVM without screening 67.6 ± 11.9 65.9 ± 9.6 68.2 ± 8.6 66.3 ± 10.0

FNN-SWEEP with PART 65.1 ± 11.3 66.5 ± 10.3 65.5 ± 12.6 62.2 ± 13.1
FNN-SWEEP with S2N 67.2 ± 12.6 62.9 ± 11.9 60.9 ± 10.4 59.1 ± 12.9
FNN-SWEEP with U-test 67.0 ± 12.6 62.5 ± 11.1 60.4 ± 10.1 59.1 ± 14.4
FNN-SWEEP without screening 67.0 ± 12.6 62.7 ± 10.6 60.3 ± 11.6 58.7 ± 11.9

kNN with PART 60.3 ± 11.6 59.3 ± 10.5 58.9 ± 12.2 59.8 ± 11.4
kNN with S2N 59.5 ± 11.9 57.2 ± 10.8 55.6 ± 10.9 55.0 ± 10.6
kNN with U-test 59.5 ± 10.9 58.6 ± 11.5 58.0 ± 9.9 57.1 ± 11.1
kNN without screening 58.0 ± 12.6 56.6 ± 11.7 57.5 ± 9.7 57.5 ± 9.0

MRA with PART 65.2 ± 11.2 64.2 ± 11.1 61.8 ± 14.6 55.2 ± 11.8
MRA with S2N 67.2 ± 11.9 63.3 ± 12.7 63.0 ± 10.9 56.9 ± 9.6
MRA with U-test 67.2 ± 11.9 61.8 ± 11.6 60.1 ± 10.4 55.1 ± 12.1
MRA without screening 67.2 ± 11.9 62.7 ± 11.3 59.1 ± 10.3 54.3 ± 13.6

WV with PART 61.7 ± 14.3 63.9 ± 12.9 60.9 ± 13.0 64.6 ± 12.0
WV with S2N 63.3 ± 13.8 63.3 ± 12.1 62.6 ± 12.1 63.1 ± 11.3
WV with U-test 66.1 ± 11.4 62.6 ± 9.3 62.3 ± 10.4 63.2 ± 10.1
WV without screening 66.1 ± 11.4 62.6 ± 11.4 63.0 ± 11.3 63.6 ± 9.6
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he average blinded accuracies and their S.D.s were calculated from 10 combin
a The highest accuracy.

as compared on the basis of the accuracy by using a blinded
ata set that was not used for modeling. By using 10 independent
lass predictor models, the average accuracy for blinded data set
as calculated for the CNS and leukemia data sets.
The results of leukemia data are shown in Table 1. The result

hows that average accuracy of the PART-BFCS models is the
ighest as shown in Table 1. In this experiment, top 10 indepen-
ent class predictor models were constructed by PIM (parameter
ncreasing method) [17] for each condition and data set. And
he numbers of construction of high performance model (100%
r 97.1% accuracy) were counted for each method as shown in
able 2. Four models among 10 models of five-input show 97.1%
r more accuracy for PART-BFCS method. Next, the results for
NS data are shown in Table 3. The inputs used in the predictors
ere gradually increased from the one-input model to four-input
odel. As shown in Table 3, the PART-BFCS method clearly

howed high performance when compared with the other meth-
ds in all input models with the exception of one-input model.
he accuracy of the PART-BFCS method gradually increased
nd eventually, it reached 77.3% in the four-input models. On
he other hand, SVM, FNN-SWEEP, kNN, MRA, and WV with
arious filtering showed an accuracy of 55.1–68.3%, which was

ower than that of PART-BFCS. Average accuracy of three-input
VM models with S2N was the highest except BFCS models
69.5%). By using U-test, however, we found that the accuracy
f BFCS with PART was significantly (P = 5.94 × 10−4) higher

n
p
F
0

models constructed by PIM.

han one of SVM with S2N. In the four-input models, PART-
FCS method could constructed the most models that showed
ccuracies were 86.7% (first highest) or 85.7% (second high-
st), as shown in Table 2. These results could be explained by
he facts that PART is the useful filtering method that could
mprove performances of simple models [5], BFCS is the mod-
ling method in which the model is constructed by assembling
imple models, such as one-input FNN. Otherwise, complex
odels are constructed by other modeling methods. Table 2

hows that the most high performance models were constructed
y PART-BFCS method. Therefore, combination of PART and
FCS is the best one.

.2. Evaluation of prediction results using improved RIBFCS

PART-BFCS method can estimate assurance of results by
alculating reliability index for BFCS (RIBFCS). In the present
tudy, we propose improved RIBFCS (new RIBFCS) by modifying
quation of RIBFCS (old RIBFCS) for more practical cancer
iagnosis. For acute leukemia and CNS data, both RIBFCS of
ach patient in blinded data were calculated (Fig. 3). Fig. 3
hows distributions of correct and incorrect sample for old and

ew RIBFCS. It is necessary that there are many incorrect sam-
les in low RIBFCS and many correct samples in high RIBFCS.
or old RIBFCS, two distributions are not separated (P = 0.169,
.311), as shown in Fig. 3A and B. On the other hand, they
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ig. 3. Comparison of old and new RIBFCS. White bars and gray bars indicate the
ere calculated by Mann–Whitney test and indicate the difference in RIBFCS di

re clearly separated (P = 6.44 × 10−12, 1.95 × 10−9) for new
IBFCS, as shown in Fig. 3B and D. Based on this new index,

he discriminated group with over 90% prediction accuracy
as separated from the others. For example, the patients who
ad new RIBFCS > 5 corresponded to 48.5% of all patients for
eukemia data, and an accuracy of 99.4% was achieved. And, the
atients who had new RIBFCS > 5 corresponded to 29.3% of all
atients for CNS data, and a accuracy of 90.7% was achieved.
his result implies new RIBFCS more practical than old one.
ld RI is mean distance from boundary line for each gene.
FCS is one of voting methods by assembling simple methods.

mproved RI is modified by adding each signs of simple models
n the BFCS model. Thus, improved RI is superior to old RI.

.3. Comparison of selected genes with known prognostic
arker genes

We investigated the presence of previously reported prognos-
ic marker genes among the genes selected in the 10 constructed
ombinations of four-input PART-BFCS models. There were
otal of 40 genes in 10 models. Some genes were selected sev-
ral times. In the case of PART-BFCS, 14 genes among 40 genes

re independent, as shown in Table 4. Three genes among these
4 genes were reported to be prognostic markers for cancer: The
CND1 gene was reported by Tan et al. [20] to be a high-risk
arker gene. CCND1 plays an important role in regulating the

s
f
a
T

ibution ratio of correct sample and incorrect samples, respectively. The P-values
tion between the correct and incorrect samples.

rogress of the cell division during the G1 phase of the cell
ycle. Overexpression of CCND1 correlates with sensitivity to
isplatin [21]. The LIF gene was reported by Park et al. [22] to
e a low-risk marker gene. LIF induces growth arrest and dif-
erentiation of cells. The USP4 (UNPH) gene was reported by
rederick et al. [23] to be a low-risk marker gene. These obser-
ations accurately matched with low or high gene expression of
he above-mentioned three marker genes, as shown in Table 4.
hese findings suggest that the PART-BFCS method may be
sed to identify new marker genes.

.4. Comparison of genes used in PART-BFCS predictors
nd other predictors for CNS data

We firstly compared FNN-SWEEP and BFCS to investigate
umerical character of the genes selected by PART-BFCS. Both
NN-SWEEP and BFCS are based on FNN. The one-gene pre-
ictors were constructed for each gene from second input to
ourth input in the two methods. And then, average model-
ng accuracy of one-gene predictors for 10 combinations, was
alculated (Table 5). The BFCS genes used as one-gene predic-
ors showed clearly higher accuracy than FNN-SWEEP ones, as

hown in Table 5. The average modeling accuracies of the genes
rom second to fourth were 83.3%, 77.3% and 79.0% for BFCS,
nd 72.0%, 68.7% and 65.7% for FNN-SWEEP, respectively.
he PIM method was used in the FNN-SWEEP. This method is
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Table 4
The genes used in PART-BFCS class predictor for one set of CNS tumor data set

Accession number Gene name Descriptions Times of
selection

Average intensity
of surviving
patientsa

Average
intensity of
dead patientsb

Threshold
of modelc

Prognostic
markers

U20657 USP4 Ubiquitin specific protease 4
(proto-oncogene)

9 796 127 391 d

X59798 CCND1 Cyclin Dl (PRAD1: parathyroid
adenomatosis 1)

6 0 2176 330 e

M73547 C5orfl8 Chromosome 5 open reading frame 18 6 1439 275 797
AB000460 C4orf8 Chromosome 4 open reading frame 8 4 2429 1094 1605
L33243 PKD1 Polycystic kidney disease 1 (autosomal

dominant)
4 1498 228 815

X13967 LIF Leukemia inhibitory factor (cholinergic
differentiation factor)

2 464 5 206 f

L10333 RTN1 Reticulon 1 2 4483 821 1747
D30756 M17S2 Membrane component, chromosome 17,

surface marker 2
1 591 59 236

D83018 NELL2 NEL-like 2 (chicken) 1 2710 851 1416
HG2238-HT2321 NUMA1 Nuclear mitotic apparatus protein l, alt.

splice form 2
1 2833 1197 1721

J04046 CALM3 Calmodulin 3 (phosphorylase kinase, delta) 1 3287 1022 1753
S76475 NTRK3 Neurotrophic tyrosine kinase, receptor, type

3 (TrkC)
1 2002 96 687

U25849 ACPI Acid phosphatase 1, soluble 1 206 1082 602
Y09616 CES2 Carboxylesterase 2 (intestine, liver) 1 2894 1065 1706

a The average intensity of gene expression in the patients predicted as survivors.
b The average intensity of gene expression in the patients predicted as dead.
c The threshold of gene expression in the weak learner model.
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The simplest rule is that patients with high expression of CCND1
gene are likely to exhibit poor prognosis. Six patients showed
high expression of CCND1 gene and five of them were actually
dead patients, which corresponds to 28% (5/18) of all the dead

Table 5
Average modeling accuracy of one-input models between BFCS and FNN-
SWEEP (%)

Order of selection

Second Third Fourth

BFCS 83.3 77.3 79.0
FNN-SWEEP 72.0 68.7 65.7

In this experiment, 10 combinations of four-input models were constructed.
Three genes from second to fourth in four-input were selected as combination
of genes for each method. The modeling accuracies when these three genes were
used alone as one-gene predictors, were calculated for 10 combinations.

Table 6
Average S.D. of gene expression in lower class between BFCS and PART-BFCS

Methods The S.D.s of lower class

BFCS 0.56
PART-BFCS 0.39
d The marker gene reported by Frederick et al. [23] as a low-risk marker.
e The marker gene reported by Tan et al. [20] as a high-risk marker.
f The marker gene reported by Park et al. [22] as a low-risk marker.

ery useful to select input combination that shows high accuracy
y combining low accuracy inputs. But, the application of PIM to
igh dimensional data, such as microarray data, may cause over-
tting. On the other hand, the boosting used in the BFCS is the
ethod that can construct high-accuracy predictor by combining

ne-gene predictors. Thus, low-accuracy one-gene predictors
re hardly selected. It may be for this reason that BFCS showed
igh performance.

Next, BFCS were compared with PART-BFCS. Average of
ene expression for the 40 genes in 10 combinations of four-
nput models, was calculated for each class (survivors or dead).
nd average standard deviation (S.D.) of lower gene expression

lass for 40 genes is shown in Table 6. Table 6 shows that the
.D. of PART-BFCS was lower than one of BFCS. The values
f S.D.s were 0.57 for BFCS and 0.39 for PART-BFCS. This
endency is corresponding to the fact previously reported by us
5]. The genes with low S.D. in lower class may show high
eneralization performance.

.5. IF-THEN rules extracted from PART-BFCS model

After modeling, the IF-THEN rules for CNS prognosis were
btained from the model of highest blind accuracy among the

0 combinations. The model includes the CCND1 gene and
SP4 (UNPH) gene as known prognostic markers. The IF-
HEN rules have been obtained as a matrix that is classified
ased on expression level of such selected genes (Fig. 4). Using

A
m
a
c

his matrix, simple and precise rules were obtained as follows.
verage of gene expression for the 40 genes in 10 combinations of four-input
odels were calculated for each class (survivors or dead). And then, aver-

ge standard deviation (S.D.) of lower gene expression class for 40 genes was
alculated.
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Fig. 4. IF-THEN rules in the top two model of PART-BFCS. Since the expression level of each gene can be divided into either high or low groups using fuzzy logic,
this model comprised 16 (=24) fuzzy rules. Numbers in each matrix are identical to the patient numbers previously described by Pomeroy et al. [7]. Numbers in
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old type and italic type indicate the poor and good prognosis patients, respect
ach patient. Patient numbers in the circle represent incorrect classification by
odeling data set.

atients. Next simple rule is that patients with low expression
f CCND1 gene and low expression of USP4 (UNPH) gene are
ikely to exhibit poor prognosis. Nineteen patients showed low
xpression of USP4 (UNPH) gene and 12 of them were actu-
lly dead patients, which corresponds to 92% (12/13) of dead
atients showing low expression of the CCND1 gene. Nineteen
atients showed high expression of USP4 (UNPH) gene and low
xpression of CCND1 gene, and 18 of them (95%) were actually
urviving patients, which corresponds to 69% (18/26) of all the
urviving patients. It was found that surviving or dead patients
ere clustered at specific parts of the matrix. The following rule
as also found: patients were likely to exhibit a poor progno-

is when the USP4 (UNPH) expression was low and C5orf18
xpression was low. It was also found that on this matrix, two
atients showing poor prognosis were incorrectly predicted as
howing good prognosis. This may be due to the inability for
omplete removal of their tumors by CNS surgery.

. Conclusions

In the present study, we investigated combinations of vari-
us filter and wrapper approaches, and found that combination
ethod of PART and BFCS (a kind of boosting) is sig-

ificantly superior to other methods with regard to high
rediction accuracy for construction of class predictor from
ene expression data. This method could select some marker
enes related to cancer outcome. In addition, we proposed
mproved RIBFCS of PART-BFCS. Based on this new index,
he discriminated group with over 90% prediction accuracy
as separated from the others. It is necessary that there are

bout 90% or more prediction accuracy in the practical diag-
osis application. These results suggest that the PART-BFCS

ethod has a high potential to function as a new method of
arker gene selection for the diagnosis of patients, using high

imensional data such as DNA microarray, mass spectrometry
MS), and two-dimensional polyacrylamide gel electrophoresis
2D-PAGE).
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Patient numbers are placed in the matrix according to the expression levels of
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